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Best results are obtained when simultaneous readin
are made at a near-by station of known elevation at the
base of the hill or mountain.

The average of three or more simultaneous readin
taken at 15 minutes or half hour intervals ordinari
will dlg&ve better results than can be obtained from si.nglye
rea. . -

If t.hg: base station is located near by and all readin
are accurately made it should be possible to figure the
difference in elevation very closely, using reduction tables
such as those published in ‘‘Smithsonian Meteorological
Tables.” It is important to record the attached ther-
mometer and shade air temperatures also, for use in cor-
recting and reducinghthe readings.

In the Tropics where the air is warm and light one
inch difference in air pressure is equivalent roughly to
1,000 feet difference in altitude, while in the temperate
zone where the air is cooler and denser an inch difference
in pressure may equal only 850 or 900 feet difference in
altitude. For this reason the arbitrary fixed altitude
scales on aneroids are not reliable for varying temperature
conditions.

If it is not possible to take simultaneous readings at a
near-by base station, the pressure at the lower station
must be estimated. Under these conditions less accu-
rate results will be obtained.

The accompanying plate (No. 2) shows typical winter

ressure curves for temperate zone and tropical climates.

e large irregular pressure fluctuations in the temperate
zone make it extremely difficult to determine elevations
accurately from barometric readings unless simultaneous
readings at a near-by base station can be made.

In the Tropics the barometric pressure is so constant,
except for regular, well-marked diurnal fluctuations,
that the sea-level pressure can be estimated closely,
and fairly good altitude determinations can be made
without taking simultaneous pressure readings at a near-
by base station.

The following results were obtained in the Canal Zone,
elevations being determined from the average of six
mercurial barometer readings taken simultaneously at
the upper and lower stations.

Elevation %::‘;}gﬂe‘lg'
Station. baroll)nyeter. trl:ﬁlf.la—

Feet. Feet.
ADOOD L, o1 eeeenneneeemarnenncnrenrnranannanarasnesnnss 659 654
Cerr0 GOrd0.eeeccneoceoceasescnscaacnecsecenaseasnscenanrranas 085 972
It will be seen that the elevations obtained by barom-

eter were off less than 1 per cent (assuming the elevations
by trim%ulation to be correct).

Individual readings varied but slightly from the mean
of all readings, as may be seen from the following table:

Corrected sta
pressure. Indicated
Indicated
Time. differ- | Si4tude
ence. TR
Aneon. Hil
Ferth
1:45 p.
2:00 11; 660
2:15 p. 659
2:30 p. 665
i 2
8:15p 657
Average of all readings. 659

1 Difference in foot plus 92 feet (elevation of Ancon Station).
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These determinations were made under the most
favorable conditions, the base station at Culebra being
not more than 2 miles distant from Cerro Gordo, and the
base station at Ancon less than a mile distant from
Ancon Hill. Actual field work would often have to be
performed under less favorable conditions, with base
stations farther distant or unavailable, in which case
less accurate results would be obtained.

COMPARISON OF SNOW=BOARD AND RAINGAGE-CAN
MEASUREMENTS OF SNOWFALL.

By RoserT E. HORTON.
[Voorheesville, N. Y., Mar. 17, 1920.}

The unusual accumulation of snow in eastern New
York afforded an opportunity for comparison of the
accuracy of measurements of snowfall by two different
methods in common use. The rain gage overflow can
and the snow board were both exposed on the ice near
the center of a pond at thie author’s laboratory, the pond
being about 100 feet wide and several hundred feet in
length, in an easterly and westerly direction. The north
slope to the pond ranges from 10 to 20 feet per hundred,
ang the pond is bor%ered on the north by occasional
trees and brush. The south bank is abrupt and wooded.
Snow drifts on the pond surface only on rare occasions.

The snow board used was that devised by the author,
consisting of a sheet of white beaver board, about 16
inches square, with & layer of cotton flannel tacked on to
the surface of the beaver board, nape uppermost. After
each reading was taken, the snow board was cleaned and
dried, and Iaid on the surface of the newly fallen undis-
turbed snow. In all the storms recorded in the table,
the snow fell mainly during: wind, and at.a large angle
to the vertical, often approaching the horizontal.

Comparing the results as shown in column 5, it will be
noted that the average depth of snowfall, as determined
by the water equivalent, 13 16 per cent more than that
determined from measurements taken in the overflow
can of the rain gage. In taking the readings, the gage
can was first weighed, the snow then removgﬁst.herefrom,
and a sample cut out of the snow on the snow board b
inverting the gage can over the snow board, like a cookie
cutter, then picking up gage can and snow board together,
so as to get a perfect sample in the gage can. The gage
can was then again weighed. An accurate torsion
balance was used, making possible in all cases to deter-
mine the water equivalent of the snow to the nearest
thousandth of an inch of water.

It will be noted that in very light snow flurries, the
amount caught on the snow board might be equal to
or less than that caught in the gage can. In all heavier
snows, the catch on the snow board was greater, and b
a fairly consistent percentage. Much of this snow fell
when the temperature was about 32°, and while the type
of snow board used was specially designed to simulate
a snow surface, and prevent melting, the results indicate
that in very light snow flurries the snow board may give
deficient results. The most significant result is, however,
the fact that for two months taken as a whole, the excess
indicated by the snow board is 16 per cent as compared
with gage-can measurements. This on a total winter’s
snow precipitation of 12 inches amounts to roundly 2
inches, a fact which, if generally true, helps to afford an
explanation of the apparent deficiency of winter water
losses, often observedp by comparison of precipitation
and runoff on streams where the runoff records appear to
be above suspicion.
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F16. 2.—Typical winter atmospheric-pressure curves for a 7-day period at New York City and at Panama.

F16, 1.—Overflow can and snow board.

(A, snow board.)

[To face p. 88.]
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Comparison of snowfell measured by standard rain gage overflow can
and by snow board. Horion Hydrologic Laboratory, 1920.

‘Water equivalent

W,
Depth of sno Ratio; | Total
Date, 1920. on snow Board |depthon
board. Gage Snow can. ground.
can. board.
1 2 8 4 5 ]
Inches., Inches.

0.151 1.08 |..........

014 0.26 7.50

L041 1.00 8.50

. 230 1,10 11,87

057 1.24 13.00

.003 0,34 11.50

. 600 1.10 20.13

.193 1.21 18.37

. 302 1.73 15.00

.018 B O

029 L32 [cenmen.a...

091 128 fooaaeeeens

1.729 L16 [ceneren...

ON THE COMPARISON OF METEOROLOGICAL DATA WITH
RESULTS OF CHANCE.

By Louis Bessox, Chief, Meteorological Service of Paris.
[Translated from the French, and abridged, by Edgar W. Woolard.]

1.

Suppose we have a set of values of some meteorological
element, e. g., the mean daily atmospheric pressure for N
consecutive days,

Yn YI; Yu' °

If one of these values is smaller than both the precedin,
and the following value, then the pressure has passe
through a minimum; suppose we find, in the series, M/
such minima: should we attribute this result to some
physical cause which tends to produce M barometric
minima in N days, or is it only such that it can be ac-
counted for by the laws of pure chance? Wae are thus led
to the problem of determining how many minima should
be found in a series of N numbers obtained by chance
selection. (Whatever concerns minima is equally appli-
cable to maxima.)

This problem was investigated some time ago by
Grossmann,! who employed the method of variations:
Given a series of numgers, the variation of each is con-
sidered to be positive, negative, or zero, according as the
following value is larger, smaller, or the same; the nu-
merical values are then discarded, only the signs of the
variations being retained. Evidently, a minimum is
indicated by a negative variation immediately followed
by a positive variation, or separated from the latter by
any number of zero variations.

ossmann derives the formula

ab ¢ cle—1)
M=W[I+WH+W:TRTV‘—T)+' e

e!
L0 £S5V (N—z)----(N—c>]’

where M is the number of minima which should occur in
a series of N chance values, ¢ being the number of posi-
tive variations, b that of the negative variations, ¢ that of
the zero variations. If there are no zero variations the

',Y .

t L. Grossmann, Die Aenderung der Temperature von Tag zu Tag an der deutschen
Kuste, aus dem Archiv der Deutschen Seewarte, XXIII Ji ng, 1900, pp. 34-37.
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formula becomes M=ab/N; and if, in addition, there are
as many positive signs as negative, M= N/4.

reality, the most probable number, %, of mimima in &
set of N variations which comprises a positive signs and b
negative signs is given by

(a+1)(p+1) (@+1) b+1),
a+1+b+1 a+1+b+1"°

but this value is practically equal to that given by Gross-
mann’s formula. -

If we assume the total number of signs to be infinitely
groat, it is possible to arrive, by the use of variations,
at formulae for the pumber of minima by & method dif-
ferent from that employed by Grossmann. As a matter of
faot, the original probf,em has no meaning unless we are
dealing with a very long series, for the laws of chance are
applicable to large numbers only.

Suppose, then, that a sack contains an infinite number
of balls marked with positive, negative, and equality
signs, in such proportions that for any N balls there will
be on the average @ positive signs, b negative, and ¢
equality. The total number of balls being infinite, the
proportions of the three kinds remaining in the sack after
a drawing has been made, no matter how many may
already have been drawn, continue to be (a/N), (B/N),
and (¢/N); then the chances for drawirg a positive, nega-
tive, or equality si,;;n, are respectively (a/N), (b/N), (¢/N);
the probability of & minimum with no equality signs
therefore becomes (¢/N) (b/N), that of a minimum with
one equality sign (a/N) (b/N) (¢/N), ete. The probability
of a minimum is therefore given by

ab abec ,ab ab c, 6 é
7v7v+www+www+'"'=1‘rr=(1+7\7+7w+“")'
and the number of minima is found by multiplying this
probability by N,

1<k<

ab c B c?
M=Z 1+Tv+7v‘=+"""--"'),.

- _ab 1
"N ¢
1-%
This number does not differ sensibly from that %iven by
Grossmann, as long as N is very large. When there are
no equality signs, the two formulze become identical ;
however, in this case, taking account of the minima
which occur complete, for two consecutive signs the
probability of a miimum is of course (ab/N?); there are
N-1 pairs of consecutive signs, and the number of
minima becomes

ab

M=(N- I)F'

If there are no equality siins in the series, then the
shortest possible interval between two consecutive
minima is that where the two signs forming & maximum
occur between the two signs indicating the minima, thus:
— + — +. Weshall call this a fwo-interval; the proba-

2
bility of the occurrence of such a grouping is (LJV;' and in
a set of N signs the probable number of times it should
occur would be given by(N—3)¢fJ\#, since there are (N-3)

gets of four consecutive signs. Similarly, the next
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largest interval, the three-inferval is caused by either of
the gro }i)ings -+ + — +,~ + — — +, and hencr
its probability is
A A T e S AN
Dty A\ A e

or the same as that of the two-interval, and the proba-

ble frequency becomes (N —4)(%%?-

The four-interval is brought about by any one of the

three groupings, — + + + — +, — + — — — +,
% % — — +. The probability s
a'b®  a?b* | o a*h® a*+ab+ PP
UL Ll iy N R

and in a set of N signs it should occur a number ¢f times
equal to

a?b*(a® +ab + b?)

—w

The law of formation of these expressions is obvious:

Generally, the j-interval should be encountered in a set
of N signs a number of times equal to

. 2p2 (2 +ad-3+ .- . - +1I2)
(W—j—1) PO :

If there be equal numbers of positive and negative signs,
the probabilities of the respective intervals reduce to

(N-5)

%, 225 =2i4 ’ 3351 ,)é,: ete., and their frequencies to

N-3 N-4 3(N-5) 4(N—-6)
16 ' 16 ' 64 128

II1.

There is, however, a second method by which we may
arrive at the formule required by our original problem.
Let there be a variable, y, susceptible of n different,
equally probable, values, @,, @, . ____, @;. Assume that
y, varying by chance, takes the successive values %/, '/,
y''’ » ?Wha,t is the probability of there being a minimum
at
uppose, first, that n is so great that the relative fre-
quency of the cases where y''=y’ or ¥’/ =y’’’ is so small
as to be negligible; then there will be a minimum when
y'>y'’<y’”. This double inequality may be satisfied
m a number of different ways. If y’’=a,, there are (n-1)
possible values for y’ as well as for 4’’’ (the above series of
ossible values being arranged in numerical order), givin
n—-1)? possible cases; if y’’=a,, there are (n—2):1
Y”==a,,, there are (n—3)?; etc. Finally, when 4’/ has the
argest possible value, a,,, there is but one way of satis-
fying the inequality. Then the total number of possible
ways in which the inequality may be satisfied is

(n-12+4+ (n-22 4 .. ... +12
_ (n-1)n@2n-1)
o 6
_ 2377+ n
- 6

ete.

The probability of the occurrence of a minimum is
then the ratio of the number of possible ways in which
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the inequality may be satisfied to the number of possible
cases of different triads; this latter, since to each of the
n possible values of 4’/ correspond n possible values of
#' and also of ¥'//, is evidently n3, The probability
therefore becomes

1 1 1

3 2t e
or simply % if n is infinitely great; then, if ¥ takes on a
%1;ea.t number, N, of successive values, there will be
1

—2 groups of three successive values and we should
find the most probable number of minima to be

N-2
3

The formula of the method of variations gives as the
number of minima

M=

N—Z_

M=

As is seen, the formul®e given by the two different
methods are not the same.

Consider, now, the case where y takes on several
successive values which are equal to one another. A
minimum remains characterized by three values which
we shall continue to designate by ', ¥’/, 4’’/, such that

,yl > ,:,),n <ylll,

but now y’’ is repeated N times. ) i )
The number of possible ways in which the inequality
may be satisfied is always

(n—1)n(2n-~1),

6

but now to each of the n® possible triads correspond n*
possible arrangements with the \ extra values of y”
meluded, giving as the total number of possible different
groups »*?. (Giving to X its successive possible values

0, 1, 2,._...., and summing the probabilities, the proba-
bility of a minimum becomes
(obmen=1) 1Ly )
- n—-1)n2n-1) =n =n’(2n—- 1)
6n® n—1 6n?
1.1
~3 6n’

It is sufficient to multiply this probability by N in
order to get the most probable number of minima one
should encounter in a set of N values of y; this follows
from the mathematical definition of probability. Then
when = 1s infinitely great the probebility is %, the same
as found before.

FREQUENCY OF VARIOUS INTERVALS BETWEEN TWQO CON-
SECUT(VE MINIMA—SECOND METHOD.

Assume, first, that » is so great that we may neglect
the minima in which several equal values occur.

Minimum followed by a given value—Consider the
group of three consecutive values, ¥’, ¥/, ¥’’/, such
that ¥’ >y’ <y’"’, and let ¥’’* be given equal to a,;
then 9’’ can take any one of the values a,, ¢5, ... ..
ap—; f Y’ =a,, ¥’ can take any one of the remaining
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n—1 higher values; if '’ =a,, ¥’ can take any one of the
other n—2 values; and so on, until when ¥y’ =a,—,, ¥’
has n—p+1 possible values. The total number of
possible arrangements is

m—-1)+®m—-2)+ ... ...+ (n—p+1).

This sum is a function of p; it becomes equal to (1 —1)
when p=2, to (n—1)+(fz—2) when p=3, etc. Let

M-1)+®m—-2)+_....... +(n—p+1)=f(p).

Minimum followed by two rises, of which the second can be
zero, the series ending in a given value.—Consider the
group of four consecutive values, ¥’, '/, y'”’, 4", such
that ¥'> ¥’/ <y’’’ <y'v, and let ¥'* be given equal to a,.

Now, 4'’’ can take any of the values a,, a,----a,. 1t
is easily seen that the total number of possible arrange-
ments giving us eur required type of minimum is

Ji@+£@B)+ -+ +£i(p).
Ji@) +£iB)+ - -+ +£i(p) =£(p).

In the same way, applying the last formula to the
case of a minimum followed by three rises, of which
the last two may be zero, the entire series ending in the
value a,, we find as the total number of possible ways
in which such can be effected

J2@) +£:8) + - - - 2 () =£3(p);

and, generally, for a minimum followed by ¢ rises, the
last ¢g-1 of which may be zero, the series ending in the
value a,, this number is

Now let

Jo(D).

The same reusonin%l evidently applies to & minimum
preceded by ¢ rises, the first ¢-1 of which may be zero,
the initial value being a,.

The value of fi(p) can readily be calculated with the
help of the well-known formulas for the sums of the first
n integers, their squares, cubes, etc.

We have @n+1 5
fip=-—EH 2R Lpn,
5H(@)=272£,(p)

=2+ (2n+1)2,Pp—2n(n—1)
2
_—P*+3np*—@n—1)p,
6 ’
—mb — 2\ —{4n-2
f(p) =P +(@n ")1‘1-M+p2 Un—-2p
ete.

The probabilities of the various intervals can now be
calculated.

The two-interval.—In the notation of the method of
investigation now being employed, the two-interval is
given by a group of five consecutive values, ¥’, ¥/, y'"’,

y', 47, which satisfy the conditions
,yl >yII <ylll >ylv<yv.

A minimum immediately follows and precedes %’’’
simultaneously.
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If 4’ =a, the total number of possible ways of
satisfying the above conditions is [f;(p)]*; but %’’’ can
take any of the values a,, @,----a,; hence the total
number of possibilities becomes

331 L ()p =zgcp L2t LR o p = 20

=% (4n°— 1004 4- 1003 - 502 +n).

The total number of possible sets of five values being
n®, the probability of a minimum of this type is

1 10,10 & 1
%(4_7+7F'H='+7 '

or, since n is assumed indefinitely large, simply 2/15.
Since in a set of N values of v there are N-4 groups of
five values, the most probable number of two-intervals
is

2

15 (N-4).

The three-interval.—This interval is characterized by a
group of six consecutive values which satisfy the condi-
tions

yl >,yll <,!/III’

,ylv>yv<yvl_

Between the two minima we may have a rise and two
falls, or two rises and a fall; the second of the two rises
and the first of the two falls may be zero.

We now get as the number of ways in which these
conditions can be met

AV R ACOIAC)
-2 AP

The negative term represents the number of cases in
which y’’’ =4, these being counted twice in the pre-
ceding terms; it is negligible in comparison with the
others because it gives a polynomial of degree 5 in n,
and when the above expression is divided by n® to get
the probability of the three-interval the quotient becomes
zero when n becomes indefinitely great. The proba-
bility sought for is therefore the coefficient of the term
in n® in the expression

and

22570 1. (D) (D).

The value can, however, be found at once without
calculation by noting that because of the mutual inde-
pendence of ¥’’’ and ' the })robability of the three
interval is simply the square of that of a minimum, or
1/9; then in a set of N values, one should find }(N—5)
three intervals.

Now consider §+3 successive values of y, of which
each may be indifferently a,, a,, -. - .., @y, thus making
in all #/*® possible sets. How many of these possible

sets will have minima in %'’ and in %/+3, and only in
those places ?

Between the two minima separated by the j-interval
there can be one rise and j—1 falls, two rises and j-2
falls, and so on up to j-1 rises and one fall; any of these
{na.yfbﬁ, zero with the exception of the first rise and the
ast fall.
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The various cases furnish in all a number of possibili-
ties given by

2 S tfafat oo i)

in which the terms equidistant from the ends are eq(ilml.
The probability of the j-interval is obtained by dividing
this expression by n/*.

Strictly speaking, some cases are counted several
times in the above formula, viz, those in which the
highest value between the two minima is repeated
several times; it is easily seen, however, that if n be
very large, the number of such cases is negligible rela-
tively to that of the others; and that for » infinite, the
probability of the interval is given simply by the coeffi-
cient of 7/ in the polynomial in » by which the above
sum is expressed. .

It is perfectly practicable to calculate the value of
this development; the computations for the intervals
four, five, six, seven, and eight give for the respective
probabilities

2 1 4 1 2
35’ 45’ 567’ 525’ 4455
Therefore, in a series of N values of y, there should be

found
#5(N—8) four-intervals,
25(N—7) five-intervals,
s87(N—8) siz-intervals,
s45(N—9) seven-intervals,
25 (N—10) eight-intervals.
These results are in complete disagreement with those
reached by the method of variations. We shall investi-
gate the probable cause of the discrepancy later on.

Iv.

All of the preceding work refers to the case where the
various possible values of y are equally likely to occur.

Suppose, however, that the variable y satisfies the
well known law of Gauss or Normal Error Law; i. e., if
@ be the mean value, and

g=y—a,

then the probability of a value of y being such that z is
comprised within the limits 2z and z+dz is

%e -¥dz,

h being a constant peculiar to the variable.
The probability of a value 2’/ being preceded by a
greater value 2’ is evidently given by

h [+
=y
%fe—”"dz=u,

_"/TL; e —Ved’ =ul’

%fe _“"!dzll "ull,

e h"dz’
Put

eto,
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It is known that the indefinite integral « has the value
4 for 2=+ o, and —} for z=— . The probability
sought for may be written

,u'l-"u _ull,

}(—2u"" +1).

Now let us denote by P, the probability that a value
2’’’ will be preceded by a fall which s its preceded by
a rise, or in other words that 2’’’ will be preceded by a
minimum in 2’’. We have just calculated the proba-
bility of a value 2’ preceding a lower value 2’’; the
pll;obzgllity of a value falling between the limits z’’ and
2" +dz" is

or

% eM"dz"’ or du'’.

In order to fulfill the conditions of our problem, 2’/
can take on any value between 2z’’’ and — oo; hence, the
probability sought for will be given upon multipl’zi.ng
together the two above probabilities and summing from
— o0 to2'":

P, ==_fm G—u"’) du”

=} (—4u"2 +4u'"" +3).

Denoting by P, the probabilit’y that a value 2 will
be preceded by a minimum in 2’/ followed by two rises,
we find in the same manner

P, =2;(—8u!"+12u!" + 18ul* + 5).

We see that this last expression can be deduced from
the preceding one by mult,iplyin%1 the numerioal factor
by 1/6, and the coefficients of the terms in the poly-
nomial by 6/3, 6/2, and 6/1, then annexing the final term,5.

If we work out the problem of the probability P, of a
minimum followed by three rises, the numerical factor
of P, is nmltiﬁ)lied by 1/8, the coefficients by 8/4, 8/3,
8/2, 8/1, and the final term is 7.

We can easily determine the law of formation of these
expressions:

n the expression giving P,,,, the numerical factor

is equal to thé product of that of P; by ﬁle; the coeffi-

cients of the terms in u are equal to those in P, multiplied
by the fractions which have for numerators 2i4-2, and
for denominators the successive integers decreasing to 1;
the final term is 2i+ 1.

It may be remarked that the probability of a value 2
being followed by 4 falls, then by a minimum, is the same
as the probability of a value 2 being preceded by a mini-
mum and 4 rises.

The probabilities of & minimum and of various inter-
vals between minima may now be found.

The_probability of a value falling between 2 and
z+dz is du; the probability that this value will be pre-
ceded by a fall, itself preceded by a rise, is

P,=} (—4u?+4u+3)

Multiplying the two probabilities together, then sum-
ming from — oo to + 0, since z has this range of values,
the probability of a minimum becomes

o0
) (~4w+4u+3) du

si,
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Thus, the probability of a minimum does not depend
upon h, and it is the same as in the case where all the
values of the variable have equal probabilities.

Reasoning as before, we find that the probability of
two_consecutive minima being separated by the j-interval
is given by the expression

+ o0
(PIPH+P3P,'—3+ """ +PHP1)d'U:.

If the calculations be carried qut, and § given successively
the values 2, 3, .. .. etc., the same numbers are found as
before. The same formuls for the number and the dis-
tribution of minima, therefore, apply to both a variable
which obeys the law of Gauss and one of which all
values are equally probable.

V.

Three different tests of both sets of formul®e were
carried out by counting the minima in sets of numbers
which clearly were obtained by pure chance. The results
left no doubt but that Grossmann’s formule were in
error, and that those of the second method were very
close to the truth. Grossmann’s formule should not,
therefore, be employed in meteorological work, for it
might lead us to attribute to some systematic influence
the departures which would in reality be due only to
the workings of chance.

The discrepancy between the two sets of formule may,
perhaps, be explained as follows: We are considering a
variable which may oscillate between two extreme limits.
After taking on a small value, it has greater chances of
increasin tﬁmn of further diminishing, i. e., the prob-
ability of a positive sign is greater than that of a nega-
tive sign; the opgosite is true after the occurrence of a
large value. In Grossmann’s theory, however, the prob-
abilities of the two signs remain constant. Therefore,
however paradoxical it may seem, if a variable is in-
creasing and diminishing purely at random, it does not
follow that the succession of signs of its variations will
obey the laws of chance.

ossmann_considered also the probability of more or
less prolonged rises or falls, and his methods and results
have been used by other meteorologists; our second
method leads, however, to euntirely different formule.

Suppose the variable follows the law of Gauss; the
formulee will also be a‘s‘a:lpplicable when the variable has a
large number of equally probable values.

robability of an wsolated rise.—This condition is
given by four consecutive values such that

2> <2 >,
The probability that 2’’’ will be preceded by a fall, then
by a rise, has been calculated to be

P1=%(—4u""+4u,"' +3)'

The probability that, in addition, 2’’’ be superior to 2'¥
may be obtained by multiplying P, by the elementary
probability of 2’’/, viz, du’’/, and summing from z!7 tooo :

1 (=
o= gfl (4w 4+ 4u""" +3)du
2!

v

=;11§(8um-12u"=—18u"+11)-
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Since £!'¥ can now be anything from ~co to + o0, we must
sum ¢, du'” between those limits, giving as our required

probability
+o0 5
L - ¢ldulv = ﬂ.

_ Probability of a series of two rises.—Such a series is

given by the grouping
zl >zu <z”’ <zlv >zv,
The probability that 2! will be preceded by & fall, then
by two rises, is,
Py= g (~ 84 + 120172 1 180" + 5).
The probability that, in addition, 2'* will be greater than
2'is
1
=18
1

-
f (—8ul™® 12417 1 18ul¥ 4-5)du
v

=334 (16u™ — 324" — 724" — 40u” 4+ 41).
Finally, as 2” can take on any value between —o and
+00, the required probability is

-
These calculations may be extended to the higher cases
vlgiﬂ}’ the aid of the already formed expressions for
, P,, ete.
"It is thus found that in a set of N values there should
be found, as the most probable number,

(N — 3) single rises or falls,
To5(N —4) series of 2 rises or falls,
+2s(N—5) series of 3 rises or falls,

+335( N — 6) series of 4 rises or falls,
Toidso(N—.7) series of 5 rises or falls,
vt iwo(V—8) series of 6 rises or falls,
s5ossuo( VN —9) series of 7 rises or falls.

The fractions figuring in the above table may be de-
duced one from another in a simple manner:

The numerators increase successively by 6, 8, 10, 12,
etc., and the denominators are multiplied successively
by 5, 6, 7, 8, etc. The list of probabilities can therefore
easily be recalled and extended. A verification of the
preceding formule was made.

VI.

The formule derived in this paper appear to satisf
all demands that can be made upon them for their
application to meteorology.

or a rigorous comparison it would be necessary, in
any particular case, first of all to give the mathematical
variable all the characteristics possessed by the natural
variable being considered, and leave undetermined only
its tendency to increase or decrease in value, this last
being left to the domain of chance. It is then a question
whether or not our formuls apply to a variable of the
nature so determined, so that we may legitimately com-
pare the mathematical results of chance with the obser-
vational results of experience, and decide as to the exist-
ence of a systematic influence.

It seems to the writer that the only things which it is
necessary to consider in this connection are (a), the law
of probability for the occurrence of the various possible

[~

11
2 _-—.
¢ v =155
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values, and (b), the mean variability, i. e., the mean
difference between successive absolute values of the
variable.

(@) Our formul® are exact in both the very different
cases where all values are equally probable and where
they follow the law of Gauss, as well as in still different
cases. Hence, it can not be doubted that they possess
a very great degree of generality, and no matter what
law which the quantities occurring in meteorological
applications might follow, the application of these formu-
1 would not lead us into serious error; as a matter of
fact, such quantities usually follow the law of Gauss
quite closely.

(6) The successive values of the mathematical vari-
able are independent of one another, and the mean
variability is 2 times the mean departure; but for the
meteorological elements, particularly for a series of suc-
cessive daily values, the values are not independent, and
the mean variability is usually somewhat less than the
above quantity.' Hence we should impose on the free
mathematical variable the supplementary condition
that it have the same mean variability as has the element
being considered: unfortunately, one encounters here a
mathematical difficulty (also met with in the theory of
an imperfect gas) which has not yet been surmounted.

If we arbitrarily fixed the mean variability it would
amount to admitting that the probability of the occur-
rence of a value is a function of the preceding value,
which is exactly contrary to the fundamental assumptions
upon which the theory of probability rests, and according
to which all our formulse have been derived.

However, the mean variability does not play such an
important role as it would at first sight seem to; and some
imgie considerations show that the introduction of a
condition reducing the mean variability somewhat would
not modify the indications of our formulse.

1 Ch. Gouteresu, Sur la variabilité de la température, Annuaire de la Société météoro-
logique de France, 1906, p. 122,

INFLUENCE OF THE WIND ON
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FeBruary, 1920
WATERSPOUTS ON THE SOUTHERN CALIFORNIA COAST.

“‘Visitors at the beaches (Port San Luis, Avila, Pismo,
and Oceano) Sunday afternoon about 5 o’clock had the
%;1)1 ortunity of observing,” says the San Luis Obispo

une, ‘‘a most unusual phenomenon, that of an im-
mense waterspout traveling at a high rate of speed toward
the beach. The spout was shaped like a funnel, and is
said to have been about 2,000 feet high, extending as
high as the clouds and spreading out into a fine mist.
The spout was first visible from Avila and Pismo when
it was about 4 or 5 miles distant from the shore, and from
that time traveled rapidly until it broke on the beach
between Shell Beach and the old Oilport refinery.

‘“Fishermen who landed at Avila later in the evening
stated that they had seen three spouts at one time, two
of which were traveling in the direction of the Pecho and
one toward Shell Beach. The largest of the spouts was
one of those going toward Pecho, and probably covered
about 5 acres In area, according to the fishermen.”

In describing these waterspouts the San Francisco Call
says:

The phenomenon was followed by a tremendous downpour of rain.

Fishermen at sea north of the port viewed the three spouts simul-
taneously. As they approached the shore the two larger ones mounted
the headlands. but the third was diverted. It swept around the buoy
and proceeded across the bay at a speed estimated to be in excess of 40
miles an hour.

Water within a diamcter of from 150 to 200 yards was violently
agitated and appeared to be siphoned upward to a mass of clouds some
2,000 feet above. As the spout approached the shore persons near
atate that there was a tremendous roar. The funnel apparently de-
tached itself from the water and was drawn gradually up into the mass
of overhanging, rapidly moving, cumulo-nimbus clouds. Violent gusts

i)lf wind followed the appearance of the spouts and continued for several
ours.

According to J. E. Hissong, United States weather observer here, the
spouts were due to the overrunning of surface air by a layer of colder
air as weather control passed from an area of low to an area of high
pressure.

The spouts are the first to appear on this coast within the memory of
the oldest inhabitant.

THE MOVEMENTS OF INSECTS.

By WiLuis Epwin Hurbp.

[Weather Bureau, Washington, Jan. 6, 1920.)

The weather perhaps has more to do with the control
of insect life than all other factors combined, and the
significance of this meteorological aspect is varied.
Cold, heat, rain, hail, humidity, drought, sunshine,
electricity, and wind are factors. Temperature, rain,
and wind movement are of utmost economic importance.
Sudden cold and rain in early summer may more or less
completely destroy the incubating or newly hatched
members of what would otherwise prove to be a vast
swarm of destructive crop eaters. Drought may retard
or destroy numbers of insects in their metamorphoses.
Frosts at the moment of appearance of the imago may
wreak untold disaster to the tender brood. And pre-
vailing winds may so accelerate or retard the direction
of movement of many injurious species at the time of
their seasonal advance as to cause or avert great eco-
nomic disasters.

Thus the winds may upon occasions become the para-
mount issue of life or death for the little fliers of our
fields and orchards. When we see butterflies and other
large-winged, small-bodied insects fluttering hither and
yon, buffeted about in the air on a windy day, the
impression is strong that any extended flight of such
creatures must conform with the direction of the wind.

_in crossi

And yet the facts do not always bear out such a conclu-
sion, since in reality the unsteady butterfly is much
more capable of forcing itself against the air current
{.)hanl is the heavy locust or the more projectile-like
eetle.

The dispersion of insects by means of winds is a matter
of constantly increasing agricultural importance. It
interests the farmer inasmucﬁras it may affect his crops;
and as it affects the agricultural staples, so does it vitall
interest all of us, who need to be fed and clothedy.,
The question was formerly more discussed by the student
of geographical zoology, as it affected his plan regarding
the spread of a ty[[:e of life from region to region within
coasts or across the seas. The South American locust,
for instance, is believed in some scientific circles to be
descended from the survivors of an African swarm of
identical genus which, following more or less passively
in the steady currents of the northeast trades, succeeded
the Atlantic Ocean.

The flights, or migrations, may be largely voluntary,
though a good percentage are quite the opposite. In
nearly all cases the winds play an important part, and
most insects are likely to follow the direction of the
air currents, although some are inclined to quarter the



